2,896 research outputs found

    Quantum correlations and thermodynamic performances of two-qubit engines with local and collective baths

    Get PDF
    We investigate heat engines whose working substance is made of two coupled qubits performing a generalised Otto cycle by varying their applied magnetic field or their interaction strength during the compression and expansion strokes. During the heating and cooling strokes, the two qubits are coupled to local and common environments that are not necessarily at equilibrium. We find instances of quantum engines coupled to non equilibrium common environments exhibiting non-trivial connections to quantum correlations as witnessed by a monotonic dependence of the work produced on quantum discord and entanglement.Comment: Close to published versio

    Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks

    Get PDF
    Tensor network algorithms provide a suitable route for tackling real-time dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1) lattice gauge theory in (1+1) dimensions in the presence of dynamical matter for different mass and electric field couplings, a theory akin to quantum-electrodynamics in one-dimension, which displays string-breaking: the confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric field and particle fluctuations: we determine a dynamical state diagram for string breaking and quantitatively evaluate the time-scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present the variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.Comment: 15 pages, 25 figures. Published versio

    A generalized phase space approach for solving quantum spin dynamics

    Full text link
    Numerical techniques to efficiently model out-of-equilibrium dynamics in interacting quantum many-body systems are key for advancing our capability to harness and understand complex quantum matter. Here we propose a new numerical approach which we refer to as GDTWA. It is based on a discrete semi-classical phase-space sampling and allows to investigate quantum dynamics in lattice spin systems with arbitrary S≥1/2S\geq 1/2. We show that the GDTWA can accurately simulate dynamics of large ensembles in arbitrary dimensions. We apply it for S>1/2S>1/2 spin-models with dipolar long-range interactions, a scenario arising in recent experiments with magnetic atoms. We show that the method can capture beyond mean-field effects, not only at short times, but it also correctly reproduces long time quantum-thermalization dynamics. We benchmark the method with exact diagonalization in small systems, with perturbation theory for short times, and with analytical predictions made for closed system which feature quantum-thermalization at long times. By computing the Renyi entropy, currently an experimentally accessible quantifier of entanglement, we reveal that large SS systems can feature larger entanglement than corresponding S=1/2S=1/2 systems. Our analyses demonstrate that the GDTWA can be a powerful tool for modeling complex spin dynamics in regimes where other state-of-the art numerical methods fail

    The role of quantum information in thermodynamics --- a topical review

    Get PDF
    This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world.Comment: published version. 34 pages, 6 figure

    Lattice gauge theories simulations in the quantum information era

    Full text link
    The many-body problem is ubiquitous in the theoretical description of physical phenomena, ranging from the behavior of elementary particles to the physics of electrons in solids. Most of our understanding of many-body systems comes from analyzing the symmetry properties of Hamiltonian and states: the most striking example are gauge theories such as quantum electrodynamics, where a local symmetry strongly constrains the microscopic dynamics. The physics of such gauge theories is relevant for the understanding of a diverse set of systems, including frustrated quantum magnets and the collective dynamics of elementary particles within the standard model. In the last few years, several approaches have been put forward to tackle the complex dynamics of gauge theories using quantum information concepts. In particular, quantum simulation platforms have been put forward for the realization of synthetic gauge theories, and novel classical simulation algorithms based on quantum information concepts have been formulated. In this review we present an introduction to these approaches, illustrating the basics concepts and highlighting the connections between apparently very different fields, and report the recent developments in this new thriving field of research.Comment: Pedagogical review article. Originally submitted to Contemporary Physics, the final version will appear soon on the on-line version of the journal. 34 page

    Kosterlitz-Thouless scaling at many-body localization phase transitions

    Full text link
    We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a 'quantum avalanche'. We argue that the critical properties can be captured at a coarse-grained level by a Kosterlitz-Thouless (KT) renormalization group (RG) flow. On phenomenological grounds, we identify the scaling variables as the density of thermal regions and the lengthscale that controls the decay of typical matrix elements. Within this KT picture, the MBL phase is a line of fixed points that terminates at the delocalization transition. We discuss two possible scenarios distinguished by the distribution of rare, fractal thermal inclusions within the MBL phase. In the first scenario, these regions have a stretched exponential distribution in the MBL phase. In the second scenario, the near-critical MBL phase hosts rare thermal regions that are power-law distributed in size. This points to the existence of a second transition within the MBL phase, at which these power-laws change to the stretched exponential form expected at strong disorder. We numerically simulate two different phenomenological RGs previously proposed to describe the MBL transition. Both RGs display a universal power-law length distribution of thermal regions at the transition with a critical exponent αc=2\alpha_c=2, and continuously varying exponents in the MBL phase consistent with the KT picture.Comment: 17 pages, 10 figures; v3. minor changes, as published; v2. added section and appendix with new numerical simulations, expanded discussio
    • …
    corecore